Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression.
نویسندگان
چکیده
Adenosine A1 receptors induce an inhibition of adenylyl cyclase via G-proteins of the Gi/o family. In addition, simultaneous stimulation of A1 receptors and of receptor-mediated activation of phospholipase C (PLC) results in a synergistic potentiation of PLC activity. Evidence has accumulated that Gbetagamma subunits mediate this potentiating effect. However, an A1 receptor-mediated increase in extracellular glutamate was suggested to be responsible for the potentiating effect in mouse astrocyte cultures. We have investigated the synergistic activation of PLC by adenosine A1 and alpha1 adrenergic receptors in primary cultures of astrocytes derived from different regions of the newborn rat brain. It is reported here that (1) adenosine A1 receptor mRNA as well as receptor protein is present in astrocytes from all brain regions, (2) A1 receptor-mediated inhibition of adenylyl cyclase is of similar extent in all astrocyte cultures, (3) the A1 receptor-mediated potentiation of PLC activity requires higher concentrations of agonist than adenylyl cyclase inhibition and is dependent on the expression level of A1 receptor, and (4) the potentiating effect on PLC activity is unrelated to extracellular glutamate. Taken together, our data support the notion that betagamma subunits are the relevant signal transducers for A1 receptor-mediated PLC activation in rat astrocytes. Because of the lower affinity of betagamma, as compared with alpha subunits, more betagamma subunits are required for PLC activation. Therefore, only in cultures with higher levels of adenosine A1 receptors is the release of betagamma subunits via Gi/o activation sufficient to stimulate PLC. It is concluded that variation of the expression level of adenosine A1 receptors may be an important regulatory mechanism to control PLC activation via this receptor.
منابع مشابه
The Effect of Aerobic Training and Adenosine on the Expression of SREBP-1C and A1 Receptor in Hepatic Fat-fed Rats
Background and Objectives: Few studies have examined so far the effect of adenosine receptors’ injection and its downstream pathway on the liver’s fat metabolism. The aim of this study was to investigate the type of aerobic exercise and adenosine on the expression of sterol regulatory binding protein 1c SREBP-1c and the adenosine receptor A1 in the liver in the rats fed with high-fat foods. Mat...
متن کاملSelective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines
Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...
متن کاملCombination Therapy with A1 Receptor Agonist and Vitamin C Improved Working Memory in a Mouse Model of Global Ischemia-Reperfusion
Introduction: Stroke is one of the most important reasons of death. Hence, trials to prevent or lessen the complications originated by stroke are a goal of public health worldwide. The ischemia-reperfusion causes hypoxia, hypoglycemia and incomplete repel of metabolic waste products and leads to accumulation of free radicals triggering neuronal death. The A1 adenosine receptoras an endogenous l...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 13 شماره
صفحات -
تاریخ انتشار 1997